营业相关咨询电话:
临床检测:400-605-6655
科研效劳:400-706-6615
司法效劳:400-900-2616
测序仪器:400-096-6988
前台电话:+86-755-36307888
传真:+86-755-36307273
酿酒酵母基因组设计合成妄想旨在化学全合成真核模式生物酿酒酵母基因组,在资助人类深刻明确生命的同时,通过基因组系统性重排的实现,加速酵母进化,探索其在能源、医药、情形等领域的应用。
详述:
基因组设计合成能够按需重塑生命,突破了生命爆发与进化的自然规则。2011年,美国、中国、英国、新加坡、澳大利亚等国启动“酵母基因组合成国际妄想”,深圳欧博官网生命科学研究院作为三其中国的主要加入单位之一,深度加入了该国际协作项目。2017年相助同盟在Science以封面及专刊形式揭晓了酵母5条染色体重新合成的研究效果,证实酵母染色体基因组可重新化学全合成,并增进了多项染色体水平构建、纠错等手艺的快速生长。2018年,相助同盟在Nature communications以专刊形式揭晓7篇文章,证实SCRaMbLE 系统可加速合成酵母基因组重排,付与合成酵母快速定向进化的能力,助力酵母菌株工业应用。在此基础上,欧博官网与中国的主要代表单位基于相关的研究基础,进一步探索基因组深度设计的新原则和基因组简化纪律,生长基于合成型酵母的真核密码子拓展手艺,以期实现基于非自然氨基酸的卵白质功效立异,推动生运气动控制、新型抗体和疫苗研发、生物防控、新质料等多个应用领域的生长。
相关文章揭晓:
1.Shen Y, Wang Y, Chen T, et al. Deep
functional analysis of synII, a 770-kilobase synthetic yeast chromosome.
Science, 2017, 355(6329).
2.Zhang W, Zhao G, Luo Z, et al. Engineering
the ribosomal DNA in a megabase synthetic chromosome. Science, 2017, 355(6329):
1-7.
3.Mercy G, Mozziconacci J, Scolari V F, et
al. 3D organization of synthetic and scrambled chromosomes. Science, 2017,
355(6329).
4.Mitchell L A, Wang A, Stracquadanio G, et
al. Synthesis, debugging, and effects of synthetic chromosome consolidation:
synVI and beyond. Science, 2017, 355(6329).
5.Richardson S M, Mitchell L A,
Stracquadanio G, et al. Design of a synthetic yeast genome. Science, 2017,
355(6329): 1040-1044.
6.Wu Y, Li B, Zhao M, et al. Bug mapping and
fitness testing of chemically synthesized chromosome X. Science, 2017,
355(6329): 1-6.
7.Xie Z X, Li B, Mitchell L A, et al.
“Perfect” designer chromosome V and behavior of a ring derivative. Science,
2017, 355(6329).
8.Luo Z, Wang L, Wang Y, et al. Identifying
and characterizing SCRaMbLEd synthetic yeast using ReSCuES.[J]. Nature
Communications, 2018, 9(1).
9.Liu, W., Luo, Z., Wang, Y., et al. (2018).
Rapid pathway prototyping and engineering using in vitro and in vivo synthetic
genome SCRaMbLE-in methods. Nature communications, 9(1), 1936.
10.Jia B, Wu Y, Li B, et al. Precise control
of SCRaMbLE in synthetic haploid and diploid yeast. Nature Communications,
2018, 9(1): 1933.
11.Blount B A, Gowers G F, Ho J C, et al.
Rapid host strain improvement by in vivo rearrangement of a synthetic yeast
chromosome. Nature Communications, 2018, 9(1): 1932.
12.Shen M J, Wu Y, Yang K, et al.
Heterozygous diploid and interspecies SCRaMbLEing. Nature Communications, 2018,
9(1): 1934.
13.Wu Y, Zhu R Y, Mitchell L A, et al. In
vitro DNA SCRaMbLE. Nature Communications, 2018, 9(1).
14.Hochrein L, Mitchell L A, Schulz K, et
al. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in
yeast. Nature Communications, 2018, 9(1).
15.Shen Y, Stracquadanio G, Wang Y, et al.
SCRaMbLE generates designed combinatorial stochastic diversity in synthetic
chromosomes. Genome Research, 2016, 26(1): 36-49.